
Software Plagiarism Detection Techniques:
A Comparative Study

Divya Luke1, Divya P.S2, Sony L Johnson3, Sreeprabha S4 ,Elizabeth.B.Varghese5
 1Marthoma College of Management and Technology, Perumbavoor,

 2Narayanaguru College of Engineering, Kanyakumari,
 3, 4, 5 Mar Baselios College of Engineering and Technology, Trivandrum

Abstract -Plagiarism defines as “the act of the writings of
another person and passing them off as one’s own. The
fraudulence is closely related to forgery and piracy - practices
generally in violation of copyright laws. Software plagiarism
has been an important issue in software industry for
intellectual property and software license protection,
especially for open source projects. Thus it is important to
develop robust and effective approaches to software
plagiarism detection. In this paper we compare six tools for
detecting plagiarism: GPlag, JPlag, Marble, MOSS, plaggie
and SIM. The criteria we used for qualitative comparison are
supported languages, extendibility, presentation of results,
usability, exclusion of template code, exclusion of small files,
historical comparison, submission or file based rating, local or
web-based and open source.

Keywords: Plagiarism, Program Dependency Graph (PDG),
tokens, source code.

I. INTRODUCTION

Rapid development of internet technologies
simplified sharing any kinds of data. Extremely notable is
also sharing the source codes. Consequently, today’s "copy-
paste" generation is a subject of a notable problem of
plagiarism. It is present in many areas, from educational
and research areas to software development.
 There are two types of plagiarism are more occurs:
1. Textual plagiarisms: this type of plagiarism usually done
by students or researchers in academic enterprises, where
documents are identical or typical to the original
documents, reports, essays scientific papers and art design.
2. A source code plagiarism: also done by students in
universities, where the students trying or copying the whole
or the parts of source code written by someone else as one’s
own, this types of plagiarism it is difficult to detect.
 An important differential between source code
plagiarism [1] and free text plagiarism is that the methods
used to detect both of these differ. Source code detection is
a well-understood area that has not recently been the focus
of much research. It is thought to be easier to detect source
code plagiarism than free text plagiarism since the language
that can be used is constrained to a set of defined key words
and since any plagiarism is most likely intra-corpal in
nature [2]. Free text plagiarism contains [3] an effectively
unlimited number of possible words that can be used and
plagiarism may be intra or extra-corpal. Research on
detecting plagiarism in free text is more recent and ongoing
and has become possible due to the increasing availability
of cheap computer processing power.

This paper is about comparing different source
code plagiarism detection systems. Comparisons of
program plagiarism detection tools [4] can be roughly
divided into two categories: feature comparisons and
performance comparisons. Feature comparisons are
qualitative comparisons; they describe the properties of a
tool, like which programming languages it supports,
whether it is a local or a web-based application, which
algorithm is used to compare the files. By nature, such a
comparison is purely descriptive, and based on such a
comparison it is difficult to say which of the tools should be
considered 'the best'. Performance comparisons are
quantitative comparisons; they typically compare the results
of tools, rather than their properties.
 In section II software plagiarism detection tools
has been discussed. Next, in section III a comparative study
of different plagiarism detection tools are discussed.

II. SOFTWARE PLAGIARISM DETECTION TOOLS

A. GPlag
 GPlag [5] was developed by Chao LIU, Chen
Chen, Jiawei Han at the University of Illinois-UC, Urban in
2006. GPlag, which detects plagiarism by mining program
dependence, graphs (PDGs). A PDG is a graphic
representation of the data and control dependencies within a
procedure. The PDG thus developed from original program
and modified program are checked whether it is copied or
not by graph isomorphism. In order to make GPlag scalable
to large programs, a statistical lossy filter is proposed to
prune the plagiarism search space. The program
dependence graph, first proposed by Ferrante, it has
previously been used in the identification of duplicated
code for the purpose of software maintenance.
IMPLEMENTATION OF GPLAG
Algorithm GPlag (P, P0, K, Ý, α)
 Input P: The original program
 P0: A plagiarism suspect
 K: Minimum size of nontrivial PDGs, default 10
 Ý: Mature rate in isomorphism testing, default
0.9
 α: Significance level in lossy filter, default 0.05
 Output: F: PDG pairs regarded to involve plagiarism
1: G = The set of PDGs from P
2: G0 = The set of PDGs from P0
3: GK = {G|G € G and |G| > K}
4: G0K = {G0|G0 € G and |G0| > K}
5: for each G€ GK

Divya Luke et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (4) , 2014, 5020-5024

www.ijcsit.com 5020

6: let G0 K, G= {G0|G0 € G0 K, |G0| ¸ Ý|G|, (G, G0) passes
filter}
7: for each G0 € G0K, G
8: if G is Ý-isomorphic to G0
9: F = F Ü (G, G0)
10: return F;
 This algorithm outlines the work-flow of GPlag,
a PDG based plagiarism detection tool. It takes as input an
original program P and a plagiarism suspect P0, and outputs
a set of PDG pairs that are regarded as involving plagiarism.
By examining these returned PDG pairs, it is possible to
confirm plagiarism and/or eliminating false positives. At
lines 1 and 2, PDGs of the two programs are collected.
Then at lines 3 and 4, PDGs smaller than K are excluded.
Finally, from lines 5 to 10, GPlag searches for plagiarism
PDG pairs. For each g that belongs to the original program,
line 6 obtains all g0’s that survive both the lossless and the
lossy filters. And line 8 performs the Ý-isomorphism
testing.

B.JPlag

JPlag [6] was developed by Guido Malpohl at the
University of Karlsruhe. In 1996 it started out as a student
research project and a few months later it evolved into a
first online system. In 2005 JPlag was turned into a web
service by Emeric Kwemou and Moritz Kroll. JPlag
converts programs into token strings that represent the
structure of the program, and can therefore be considered as
using a structure-based approach. For comparing two token
strings JPlag uses the Greedy String Tiling" algorithm as
proposed by Michael Wise but with different optimizations
for better efficiency.

JPlag is a system that finds similarities among
multiple sets of source code files. JPlag currently supports
Java, C#, C, C++, Scheme and natural language text. JPlag
has a powerful graphical interface for presenting its results.
It takes input as set of programs, compares these programs
pair wise (computing for each pair a total similarity value
and a set of similarity regions), and provides as output a set
of HTML pages that allow for exploring and understanding
the similarities found in detail. JPlag works by converting
each program into a stream of canonical tokens and then
trying to cover one such token string by substrings taken
from the other (string tiling).
JPlag operates in two phases:
1. All programs to be compared are parsed (or scanned,
depending on the input language) and converted into token
strings.
2. These token strings are compared in pairs for
determining the similarity of each pair. During each such
comparison, JPlag attempts to cover one token stream with
substrings (“tiles”) taken from the other as well as possible.
The percentage of the token streams that can be covered is
the similarity value. The corresponding tiles are visualized
by the interface

C.Marble
 Marble [7] is a tool developed in 2002 at Utrecht
University. Marble is a simple, easily maintainable tool that
can be used to detect cases of suspicious similarity between

Java submissions. Marble uses a structure-based approach
to compare the submissions. It starts by splitting the
submission up into flies so that each file contains only one
top-level class. The next phase is one of normalization, to
remove details from these files that are too easily changed
by students: a lexical analysis is performed implemented in
Perl using regular expressions that preserves keywords like
class, for and frequently used class and method names like
String, System, and tostring. Comments, excessive white-
space, string constants and import declarations are simply
removed; other tokens are abstracted to their token type.
Marble is mainly tailored to Java/C#, but variants made and
applied to PHP, Perl and XSLT. Marble includes two
phases, they are
1. The normalisation phase: In this phase it transforms
source code into a special form suited for literal
comparison.
2. The detection phase: actually performs the comparisons
and ranks the results.
 Normalisation removes unessential detail from
source files. In particular, details those are easy to change
without changing the behaviour of the program. It is done
either by tool, or by hand. For example consider a Java
source file. Then split them up into a separate file for each
class. For each of these files, residing at top level,
normalise the Java source code. In code normalisation the
comments and literal strings and characters are removed
and map identifiers except for keywords (while), special
constants (true), special methods (wait) and special types
(String). It keeps these special identifiers to avoid false
positives and retain symbols like assignments, braces,
arithmetic symbols.

D.MOSS

Moss [8] is an acronym for Measure Of Software
Similarity. Moss was developed in 1994 at Stanford
University by Aiken et al. It is being provided as a web
service that can be accessed using a script. The moss
submission script works for Unix/Linux platforms and may
work under Windows with Cygwin. To measure similarity
between documents, moss compares the standardized
versions of the documents: moss uses a document
fingerprinting algorithm called winnowing. Document
fingerprinting [9] is a technique that divides a document
into contiguous substrings, called k-grams, with k being
picked by the user. Every k-gram is hashed, and a subset of
all the k-gram hashes is selected as the document's
fingerprint.

Moss is an automatic system for determining the
similarity of programs. Moss can currently analyse code
written in the following languages: C, C++, Java, C#,
Python, Visual Basic, JavaScript, FORTRAN, ML, Haskell,
Lisp, Scheme, Pascal, Modula2, Ada, Perl, TCL, Matlab,
VHDL, Verilog, Spice, MIPS assembly, a8086 assembly,
a8086 assembly, MIPS assembly, HCL2.Moss is also being
provided as an Internet service. In response to a query the
Moss server produces HTML pages listing pairs of
programs with similar code. Moss also highlights individual
passages in programs that appear the same, making it easy
to quickly compare the files. Finally, Moss can

Divya Luke et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (4) , 2014, 5020-5024

www.ijcsit.com 5021

automatically eliminate matches to code that one expects to
be shared (e.g., libraries or instructor-supplied code),
thereby eliminating false positives that arise from legitimate
sharing of code.

E.Plaggie
 Plaggie [10] is a source code plagiarism detection
engine meant for Java programming exercises. In
appearance and functionality, it is similar to JPlag. Plaggie
must be installed locally and its source code is open.
Plaggie was developed in 2002 by Ahtiainen et al. at
Helsinki University of Technology. It is a stand-alone
command line Java application. The basic algorithm used
for comparing two source code files is the same as for JPlag:
tokenization followed by Greedy String Tiling. The authors
mention that they did not implement the optimisations that
were implemented in JPlag. Plaggie can check programs
that are written in Java 1.5 also known as Java 5. Plaggie is
GNU-licensed.

F.SIM
 SIM [11] is a software similarity tester for
programs written in C, Java, Pascal, Modula-2, Lisp,
Miranda, and for natural language. It was developed in
1989 by Dick Grune at the VU University Amsterdam. The
process SIM uses to detect similarities is to tokenize the
source code first, then to build a forward reference table
that can be used to detect the best matches between newly
submitted files, and the text they need to be compared to.
 SIM detects similarities between programs by
evaluating their correctness, style, and uniqueness. Each
program is first parsed using the flex lexical analyser,
producing a sequence of integers (tokens). The tokens for
keywords, special symbols, and comments are
predetermined, while the tokens for identifiers are assigned
dynamically and stored in a shared symbol table;
whitespace is discarded. The token stream of the second
program is grouped into sections, each representing a
module of the program; each section is separately aligned
with the token stream of the first program. An alignment of
two strings is performed by inserting spaces between
characters to equalise their length. An alignment scoring
scheme is used to calculate similarity. This rewards
matches involving two identifiers by two points and other
matches by one point. It also penalizes mismatches
involving two identifiers by two points and other
mismatches by one point. SIM can handle name changes
and reordering of statements and functions.

III. RESULTS AND DISCUSSIONS
 Parker and Hamblen define source code
plagiarism[12] as “a program which has been produced
from another program with a small number of routine
transformations.” Source code plagiarism can vary from
copy-pasting small amounts of program source code to
copying large chunks of source code and masking
everything with some techniques to disguise copied
program. So it is very important to find out an effective
plagiarism detection tool.

A.Criteria for qualitative comparison
 The criteria that we use for our qualitative
comparison of the selected tools are:
1. Supported languages: The minimal requirement for

tools to be included in this comparison was to support
plagiarism detection in Java source code files, but some
tools support several other languages.

2. Extendability: It is the ability of a tool to be adapted or
configured so that it can be used for other
programming languages.

3. Presentation of results: After the running of the tools, a
lot of effort has to be done to check if found
similarities between files. In most cases, this takes a lot
more time than running the query itself. Therefore, it is
important to present the results in such a way that post
processing can be done as efficiently as possible. A
good presentation of the results should at least contain
the following elements:
Summary: Here meta data like the total number of
submissions, the successful parses, the parameters used
for running the detection and a chart showing the
distribution of similarities over the result should be
shown. Such a histogram can help identifying the range
of similarities that clearly represent no plagiarism, and
the range of values that should be investigated further.
Matches: The matches should be listed sorted by
similarity, in a comprehensive way. This can be done
pair wise, or in clusters. It should also be possible to set
a certain threshold on the minimum similarity to
include in the result overview.
Comparison tool: To be able to easily compare pairs
that are marked as 'similar' it is helpful if there is an
editor that is able to display both files next to each
other, highlighting the similarities.

4. Usability: Another criterion is the ease of use of the
tool. It should be possible for a user to use the tool
without having to spend a lot of effort in getting the
tool to work.

5. Exclusion of template code: It is normal for student
programming assignments to share some common base
code from which students have to complete an
assignment. Also, it often happens that something
explained in the lectures can be used in a programming
assignment. In both cases, the results of a search for
plagiarism may include many legitimate matches that
do not indicate plagiarism, but can be explained by one
of the previously mentioned legitimate causes. Some
plagiarism detection tools allow the user to place such
legitimately shared code in a common base file that
will be ignored during the detection phase. This can
help prevent a lot of false positives.

6. Exclusion of small files: Related to the exclusion of
template code is the exclusion of small files. Very
small files-such as so called Java beans, that only
consist of attributes and their getter and setter methods-
are most likely to return high similarity scores. This is
simply a result of the way such classes are
implemented and does not indicate plagiarism. A tool
can either mention the file size in its result, which can
help in detecting false positives caused by small files,

Divya Luke et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (4) , 2014, 5020-5024

www.ijcsit.com 5022

or it may provide a way to exclude files up to a certain
size.

7. Historical comparisons: With this criterion it denotes
the ability of a tool to compare a new set of
submissions with submissions from older incarnations
of the same programming assignment, without again
mutually comparing the older incarnations. So there
must be a way to distinguish older submissions from
newer ones. This is done either by indicating the new
and old submissions when starting the tool, or by
putting different incarnations in different directories.

8. Submission or file-based rating: Whether a tool rates
the submissions by every separate file or by submission
that is a directory containing the files of which the
program consists greatly influences the readability of
the output. When a submission consists of multiple
files, it is important that the plagiarism detection is
performed for each file in the submission, since the
detection of plagiarism in only one of the files of the
submission is enough to consider the whole submission
as being plagiarized and therefore invalid. When a
submission based rating is used the comparison might
still be file based. Then the question is how the file
comparison scores are combined into a score for the
whole submission.

9. Local or web-based: Some tools are provided as web
services. This requires a lecturer to send the student
assignments over the network. Here you take a risk of
exposing confidential information to the outside world.
Other tools have to be downloaded and run locally.

10. Open source: An advantage of open source is of course
the possibility of extending or improving the program
to better suit the situation you intend to use it for.

 In Table 1 we summarize the evaluation for easy
comparison. Instead of mentioning all supported languages
of the tools again, we have simply counted them. For the
criteria 3 – Presentation of results and 4 - Usability we
introduce a scale of 1 to 5, 1 meaning poor and 5 meaning
very good.
As given in Table 1 Gplag can be used for all languages. It
is the fastest method for finding plagiarism pairs takes 0.1
second for the whole procedure to complete. The output is
presented as table which contains list of procedures together
with what disguises are applied to each of them. By using
graph isomorphism algorithm we can easily find out which
are the isomorphic pairs used. Exclusion of template code
and small files helps to increase the efficiency. Gplag is
open source and is available as web based and as local
service.
 Jplag mainly supports Java, C#, C, C++, Scheme
and natural language text. In Jplag program is converted
into token strings using parser and scanner depending on
the programming language used. JPlag presents its results
as a set of HTML pages. The pages are sent back to the
client and stored locally. The main page is an overview that
includes a table with the configuration used to run the query,
a list of failed parses, a chart showing the distribution of the
similarity values, and listings of the most similar pairs,
sorted by average similarity as well as by maximum
similarity. One distinctive feature of JPlag is the clustering
of pairs. This makes it easier to see whether a submission is
similar to several other submissions. It is possible to submit
a base code directory containing files that should be
excluded from the comparison.

Table 1

Comparison of plagiarism tools

Feature GPlag JPlag Marble Moss Plaggie SIM

1 - Supported
languages

All 6 1 23 1 5

2 - Extendability Yes No No No No Yes

3-Presentation of
results (1-5)

5 5 3 4 4 2

4.Usability 5 5 2 4 3 2

5 - Exclusion of
template code

Yes Yes No No Yes No

6 - Exclusion of
small files

Yes Yes Yes Yes No No

7 - Historical
comparisons

No No Yes No No Yes

8 - Submission or
file based

Submission Submission File Submission Submission File

9 - Local or web-
based

Web/Local Web Local Web Local Local

10-Open source Yes No No No Yes Yes

Divya Luke et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (4) , 2014, 5020-5024

www.ijcsit.com 5023

 In Marble, it mainly supports Java, Perl, PHP and
XSLT is experimental. The language-dependent part is the
normalization phase, which can easily be adapted for
similar programming languages. Here the results are
outputted to a script named sorted or unsorted. The user
may also choose not to run the script, but to open it in a
text-editor and manually investigate the suspects. If
submissions are stored in an appropriately ordered file
system that is one directory per assignment, divided into
subdirectories for the different incarnations, which are
divided into subdirectories for the different reviewers, that
contain the submissions of that incarnation , then Marble is
able to compare each file of a new submission to not only
the files from submissions inside the same incarnation, but
also to those in older incarnations without comparing the
older submissions among themselves.
For every pair of files a similarity rating is computed.
 In Moss, it supports almost all programming
languages. The output of moss is an HTML presentation
with clickable links and an integrated HTML diff editor that
allow for easy navigation through the results. It is placed on
a web page on the moss web server. When registering to
Moss a submission script is mailed that can be used to
upload the submissions. Moss allows one to supply a base
file of code that should be ignored if it appears in programs.
By default, moss compares files based on submissions or
directories; however, the submission script exposes an
option that allows for file to file comparison.
 Plaggie supports Java 1.5 and the results are shown
in plain text on the standard output which is stored in a
graphical HTML format (using frames). It also offers an
option to disable the plain text output. The output includes a
table showing statistics such as the distribution of the
different similarity values, the number of files in
submissions, etc. The HTML report includes a sortable
table containing the top results and their various similarity
values. For further inspection a submission can be clicked
which leads us to a side-by-side comparison of the files,
highlighting the similarities. Configuring Plaggie has to be
done via a configuration file that is placed in the directory
containing the submissions. Running Plaggie is done using
its command line interface. Template code can be excluded
by providing the file containing the template code. In
addition, Plaggie offers the possibility to exclude code from
the comparison based on filename, subdirectory name, or
interface. Plaggie compares file by file, but accumulates the
results per submission.
 SIM supports C, Java, Pascal, Modula-2, Lisp,
Miranda and natural language texts. SIM can be readily
extended by providing a description of the lexical items of a
new language. The results of SIM are presented in a at text
file that first outputs some general information about the
compared files, such as number of tokens of each of the
files, total number of files, names, etc. SIM's output is on a
per-file basis; however, files are only mutually compared if
they come from different submission directories.

IV. CONCLUSION
In this paper we have compared six plagiarism

detection tools with respect to ten tool features.
Performance was compared by a sensitivity analysis on a
collection of intentionally plagiarized programs and on a set
of real life submissions. The performance was also
compared by examining the top 10 results for each tool to
the results of the others. The results of the comparison give
good insight into the strong and weak points of the different
tools.
Our findings from the comparison can be summarized as
follows:

 By comparing these tools the most efficient one is
GPlag.

 Many tools are sensitive to numerous small
changes.

 All tools do well for the majority of single
refactoring, but many tools score rather badly.

 A striking result of the top-10 comparison is that
the top-10's for GPlag, JPlag, Marble and MOSS
are fairly similar, whereas the top-10's of Plaggie
and SIM differ quite a lot from the other four

 Along the way we have discovered a few cases
where a more detailed investigation of the
behaviour is needed.

REFERENCES

[1] X. Chen, B. Francia, M. Li, B. McKinnon, and A. Seker, “Shared
information and program plagiarism detection,” IEEE Trans. Inf.
Theory,vol. 50, no. 7, pp. 1545–1551, 2004.

[2] Webster's Online Dictionary, www.webstersonline- dictionary.org
[3] A. Aiken et al., Moss: A System for detecting software plagiarism
[4] Schiller Rosita M., E-Cheating: Electronic Plagiarism, Journal of the

American Dietetic Association, 105 (7), 2005, pp. 1058 - 1062.
[5] Chao Liu, Chen Chen, Jiawei Han, and Philip S. Yu. Gplag:

Detection of software plagiarism by program dependence graph
analysis. In the Proceedings of the 12th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD06,
pages 872- 881. ACM Press, 2006.

[6] http://wwwipd.ira.uka.de/jplag/.
[7] Jurriaan Hage. Programmee plagiaa detectie met marble. Technical

Report UU-CS-2006-062, Department of Information and Computing
Sciences, Utrecht University, 2006.

[8] http://theory.stanford.edu/~aiken/moss/.
[9] Steven Burrows, S. M. M. Tahaghoghi, and Justin Zobel. Efficient

plagiarism detection for large code repositories. Softw. Pract. Expert,
37(2):151-175, 2007.Univ. California,
Berkeley,CA,2005[Online].Available:
www.cs.berkeley.edu/aiken/moss.html

[10] Aleksi Ahtiainen, Sami Surakka, and Mikko Rahikainen. Plaggie:
Gnu-licensed source code plagiarism detection engine for java
exercises. In Baltic Sea '06: Proceedings of the 6th Baltic Sea
conference on computing education research, pages 141,142, New
York, NY, USA, 2006. ACM.

[11] D. Gitchell and N. Tran, “Sim: A utility for detecting similarity in
computer programs,” in Proc. Tech. Symp. Comput. Sci. Ed., 1999,
pp.266–270.

[12] Source Code Plagiarism: Proceedings of the ITI 2009 31st Int. Conf.
on Information Technology Interfaces, June 22-25, 2009, Cavtat,
Croatia.

Divya Luke et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (4) , 2014, 5020-5024

www.ijcsit.com 5024

